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Abstract

Recent research shows that traditional database
technology does not efficiently exploit the fea-
tures of modern computer hardware. This
problem is especially visible in the area of
computationally-intensive applications, where
specialized programs achieve performance orders
of magnitude higher than DBMSs. In this arti-
cle we present techniques that aim at bridging this
gap. Three issues are discussed: efficient query
execution on superscalar CPUs, optimizing disk
bandwidth on commodity hardware, and exploit-
ing the features of emerging multi-threaded and
multi-core CPUs.

1 Introduction
The amounts of data that is being gathered or generated
grows at a rapid rate. This data avalanche may be noticed
in various real-life areas like stock markets, website users
tracking and sensor networks. Scientific applications also
need to store and query enormous datasets e.g. sky photos
in astronomy or high-energy physics experiment results. In
many of these areas database technology could be applied.
However, the performance of traditional DBMS systems is
often orders of magnitude lower than specialized solutions,
preventing them from being used.

One of the main reasons of poor DBMS performance is
slow adaptation of database architecture to new hardware
trends. In the recent VLDB tutorial [1] Ailamaki presented
a comprehensive overview of modern hardware features
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and discussed why current DBMS technology fails to ex-
ploit them. Since more hardware changes are on the hori-
zon, without new solutions in the DBMS architecture the
performance gap will probably increase even further.

Another problem limiting DBMS performance comes
from the fact that traditional DBMS architecture was orig-
inally designed for business transaction processing. In the
recent ICDE panel [14] Stonebraker and Cetintemel argue
that various application areas have different requirements,
that often cannot be met at the same time. For example,
architecture efficient in high-update OLTP workloads may
not perform as well in data intensive OLAP scenarios. This
leads to development of task-specific database engines.

Our previous research on data intensive applications re-
sulted in development of the MonetDB [3] system1. In the
current project we investigate new techniques that further
improve processing performance of database kernels and
overcome limitations of MonetDB. Three main research
targets have been identified so far. The first one was to
optimize execution layer for modern superscalar CPUs. As
a result X100, a new processing engine for MonetDB, was
developed. It achieves high performance in main memory,
where its bandwidth requirements can be met. To scale this
performance to disk-based datasets, we currently work on
ColumnBM, a dedicated storage layer that introduces ul-
tra lightweight compression and cooperative scans to boost
disk bandwidth and provide X100 with enough data to pro-
cess. Finally, parallel features of emerging multi-threaded
and multi-core CPUs, introduce new challenges for the
database architecture. We plan to extend X100 with par-
allel processing to exploit the computational potential of
this new hardware.

The outline of the paper strictly coincides with the sta-
tus of our research. We start with the brief description of
X100 in Section 2. Section 3 presents our current work on
ColumnBM. Section 4 presents new parallel CPUs and dis-
cusses our research goals in this area. Finally, we conclude
in Section 5.

1MonetDB is now in open-source, see monetdb.cwi.nl



. . . Query tree . . .

Decompression

1.19

1998−09−03

Disk Disk Network

selection
vector

X100
execution
engine

CPU

Storage

vat_price

Select

Project

selection
vector

shipdate returnflag extprice

hash table maintenance aggr_sum_flt_col

map_mul_flt_val_flt_col

map_hash_chr_col

returnflag sum_vat_price

the cache
vectors fit in

Cache

Aggregate

Scan

vectors
contain multiple
values of a single
attribute

primitives
process entire
vectors at a time

operators
process sets
of tuples
represented as
aligned vectors

select_lt_date_col_date_val

returnflagshipdate
Scan

extprice

ColumnBM

Main
memory in DSM

data

���
�

���
�

���
�

1 2 3 4

5 76
1 2 3

1 2 3

3

67

5

4

4

Figure 1: X100 – architecture overview and execution layer example

2 Vectorized in-cache processing in X100
X100, presented in Figure 1, is a new execution engine for
MonetDB. Since it was previously presented in [5, 19], in
this section we give only a short overview of it.

The main rationale behind the development of X100 was
a performance gap between database technology and hand-
written optimized solutions. A simple experiment with
Query 1 from the TPC-H benchmark [15] shows that this
difference can be even in two orders of magnitude:

DBMS “X” MySQL MonetDB/MIL MonetDB/X100 hand-coded
28.1s 26.6s 3.7s 0.60s 0.22s

The poor performance of the two first systems is mostly
related to the tuple-at-a-time processing found in tradi-
tional Volcano-like [8] architectures and N-ary storage
model (NSM) used. The overhead related to expression in-
terpretation and retrieval of single attribute values from a
tuple becomes a dominant factor and dwarfs the actual pro-
cessing time. Additionally, tuple-at-a-time prevents mod-
ern CPUs from utilizing their superscalar features.

MonetDB presents an alternative approach to query pro-
cessing. Data is vertically partitioned [6] into columns,
which are processed in a column-at-a-time fashion by
highly-specialized execution primitives of MIL algebra [4].
This approach minimizes interpretation overhead and pre-
vents instruction cache misses, allowing MonetDB/MIL to
be an order of a magnitude faster than traditional systems.
However, column algebra requires materialization of the re-
sult of each intermediate processing step, making execution
primitives highly memory bound. Additionally, MonetDB
is designed as a main-memory system, and achieves high
performance only for problems of a limited size.

X100 combines the Volcano iterator model with Mon-
etDB column processing in a novel idea of vectorized ex-
ecution. Instead of single tuples entire vertical vectors
of single attribute values are passed through the iterator

pipeline. This minimizes interpretation overhead and al-
lows MonetDB-like efficient execution primitives. Addi-
tional benefit comes from the fact, that the vector size is
tuned to make all vectors fit in the cache at the same time.
As a result, intermediate result materialization is happening
inside the cache, making execution primitives completely
CPU-bound.

Operators in X100 provide the control logic, common
for all data types, arithmetic functions etc. The actual
work is performed by execution primitives, generated from
shared primitive templates. Each primitive provides only
a basic functionality and usually consists of a single loop
similar to the following example:
int map_mul_flt_col_flt_col(int n, flt* res, flt* col1,

flt* col2, int *sel)
{
for(int i=0; i<n; i++)

res[sel[i]] = col1[sel[i]] * col2[sel[i]];
return n;

}

Since iterations in a primitive are independent, the com-
pilers can apply the loop-pipelining technique, resulting
in efficient utilization of superscalar features of the mod-
ern CPUs. As an example, the described primitive needs
only ca. 5 CPU instructions per one iteration and achieves
instruction-per-cycle (IPC) ratio of over 2, resulting in
spending only 2.2 cycles per iteration. For comparison,
for the same operation MySQL uses 38 instructions and
achieves IPC of 0.8 spending 48 cycles per operation (just
addition, without counting tuple manipulation time). In
X100 time spent in primitives usually constitutes above
90% of the entire processing time, hence this high effi-
ciency directly influences the system performance.

X100 already runs the entire TPC-H benchmark, achiev-
ing performance often order of magnitude higher than the
current benchmark champion [5]. Many features are still
to be implemented, but the current focus of our research
shifted to scaling X100 architecture to large disk-based
datasets, as presented in the next section.



3 Scaling to large datasets with ColumnBM
While the X100 execution engine is efficient in main mem-
ory scenarios, achieving similar performance for disk-
based data is a real challenge. Due to its raw compu-
tational speed, X100 exhibits an extreme hunger for I/O
bandwidth. As an example, TPC-H Query 6 uses 216MB
of data (SF=1), and is processed in MonetDB/X100 in less
than 100 ms, resulting in a bandwidth requirement of ca.
2.5GB per second. For most other queries this requirement
is lower, but still in the range of hundreds of megabytes
per second. Clearly, such bandwidth is hard to achieve ex-
cept by using expensive storage systems consisting of large
numbers of disks.

This section describes our current research on
ColumnBM, a dedicated storage layer that provides
X100 with high disk bandwidth. As Figure 1 shows, it
allows combining multiple storage devices, both disks and
remote machines. For further bandwidth improvement it
employs three techniques: vertical fragmentation, data
compression and multi-query scan optimization.

3.1 Vertical data fragmentation

ColumnBM stores tables on disk using vertically decom-
posed storage model (DSM) [6]. This saves bandwidth if
queries scan a table without using all columns. The main
disadvantage of this model is an increased cost of updates:
a single row modification results in one I/O per each influ-
enced column. To tackle this problem ColumnBM uses a
technique similar to differential files [13]. Vertical columns
are divided into large data chunks (>1MB) that are treated
as immutable objects. Modifications are stored in the (in-
memory) delta structures, and chunks are updated only pe-
riodically. During the scan, data from disk and delta struc-
tures are merged, providing the execution layer with a con-
sistent state.

While ColumnBM uses DSM, this is not strictly re-
quired by the X100 execution model. The main rationale
behind the in-cache column-wise layout (i.e. vectors) in
X100 is not optimizing memory storage or reducing I/O
bandwidth, but allowing MonetDB-like primitives that for
reduced interpretation overhead and improved compiler op-
timization and CPU execution. To store data with a high-
update rate, ColumnBM will also support the PAX [2] stor-
age scheme, which stores entire tuples in disk blocks, but
uses vectors to represent the columns inside such blocks.

3.2 Compression

While compression in databases was proposed by many
researchers [9, 12], we introduce two novel techniques:
memory-to-cache decompression and ultra lightweight
compression.

Most database systems employ decompression right af-
ter reading data from the disk, storing buffer pages in an
uncompressed form. This solution requires data to cross
the memory-cache boundary three times: when it is deliv-
ered to the CPU for decompression, when uncompressed
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data is stored back in the buffer, and finally when it is used
by the query. Since such approach would make X100 de-
compression routines memory-bound, ColumnBM stores
disk pages in a compressed form and decompresses them
just before execution on a per-vector granularity. Thus
(de)compression is performed on the boundary between
CPU cache and main memory, rather than between main
memory and disk. This approach nicely fits the delta-based
update mechanism, as merging the deltas can be applied
after decompression, and chunks need to be re-compressed
only when they are updated on disk.

Traditional compression algorithms usually try to maxi-
mize the compression ratio, making them too expensive for
use in a DBMS. ColumnBM introduces a family of new
compression algorithms that use simple and predictable
code with minimized number of conditional branches. As
a result they execute efficiently on modern CPUs and of-
ten achieve a throughput of over 1 GB/s during compres-
sion and a few GB/s in decompression, beating speed-tuned
general purpose algorithms like LZRW and LZO, while
still obtaining comparable compression ratios.

Figure 3 shows that for low-end disk subsystems ap-
plying compression results in a speedup comparable to
the compression ratio. For systems with a better RAID
the increased data delivery ratio makes the DSM execu-
tion CPU-bound, significantly reducing the speedup. The
PAX queries, due to higher bandwidth requirements of this
model, are still I/O bound and achieve a good speedup.



3.3 Cooperative scans

While compression improves performance of isolated
queries, it is usually the case that multiple queries are run-
ning at the same time competing for disk bandwidth. If
many queries process the same table, each of them issues
next page requests without concern for the system state. As
a result, each query gets only a fraction of available disk
bandwidth. Additionally, the buffer manager usually con-
centrates on keeping most recently used pages in the buffer
pool, possibly evicting pages that could be soon reused by
a running scan.

In [18] we described our preliminary research on the
idea of cooperative scans, presented in Figure 4. In this
approach queries, instead of enforcing one particular data
delivery order, cooperate between each other to share as
much bandwidth as possible. We presented a number of
variants of this idea:
attach – a new query starts reading the table at a posi-

tion currently processed by some other already run-
ning query. This brings a problem with unbalanced
queries, e.g. when one query is I/O bound and another
is CPU-bound. They quickly desynchronize and the
standard behavior reappears.

elevator – queries read data sequentially from a sliding
window that shifts in a circular manner over the entire
table. The window is only shifted to the next page if
the last page has been processed by all active queries.
This approach optimizes overall I/O bandwidth, but
degrades the response time of faster queries.

reuse – queries first look for the interesting data in the
buffer pool, and only if nothing is found, an I/O re-
quest is scheduled. With this approach fast queries
might initiate multiple I/O requests when only one
would be sufficient. Additionally, usually applied
LRU buffering policy can be suboptimal, as pages that
are still relevant for some running queries might be
evicted.

relevance – the active buffer manager uses a fetch rele-
vance function to decide which pages to read from the
disk to satisfy the largest amount of starving queries.
Additionally, an eviction relevance function decides
which page should be removed from the buffer pool.
As a result in most cases only a single I/O needs to
be performed and most queries can read data that is
already buffered.

We have implemented these algorithms inside PostgreSQL
and in ColumnBM. Preliminary results show that (assum-
ing sufficient CPU-power) multiple queries can be run in
parallel and achieve performance close to a standalone
case. For example, X100 on ColumnBM was able to sus-
tain the same response time processing up to 30 instances
of TPC-H Query 6.

Described algorithms provide a solution in case of scans
over a single relational table using NSM. In our future re-
search we plan to address few issues that make the situation
more complex: scans over multiple tables, scans over DSM
tables and compression.

ColumnBM

CScan CScan CScanScanScanScan

Buffer
Manager

Figure 4: Scan processing in a traditional system and in the
ColumnBM

When queries perform scans over multiple tables, one
possibility is to apply the single-table strategy for each ta-
ble separately. Then the higher-level scheduling strategy
needs to be introduced. For example, when one table is
processed by many queries and another one by just a few,
simple round-robin policy might not be the most efficient.
Another possibility is to devise a multi-table scheduling
strategy, which might for example exploit the information
about a single query scanning multiple tables.

Different set of problems appear in case of vertically
decomposed tables. If queries read disjoint or identical
subsets of columns of a relational table, the problem boils
down to an NSM case. However, if the subsets only par-
tially overlap, situation complicates. Applying NSM al-
gorithm to each single column separately is obviously not
possible, as different attributes need to be delivered in the
same order to constitute a full tuple. Another choice would
be to take the union of all the currently used attributes and
treat it as a full table. This approach is also not efficient,
as large amounts of data might be read without ever being
used. The optimal strategy should be able to read only at-
tributes that are immediately required and then add other
columns when needed.

The final problem is related to our choice of memory-to-
cache decompression presented in Section 3.2. In case of
multiple queries reading the same page from buffer man-
ager, each of them needs to decompress them separately,
increasing overall decompression cost. As a result a set
of queries that were I/O bound might easily become CPU
bound. Another solution would be for the first query that
decompresses a given page to materialize it in the buffer
manager, and let the others read uncompressed data. The
choice of when to apply this strategy mainly depends on
the number of queries interested, speed of decompression
routines and in-memory materialization cost.

While there have been various proposals improving scan
performance, e.g. by allowing a query to compute multiple
results in a single scan [7] or scheduling similar queries to-
gether [11, 10], we are not aware of any database publica-
tions discussing idea close to cooperative scans. However,
similar solutions seem to have been incorporated into com-
mercial system including Red Brick warehouse, Teradata
database and MS SQL Server (as shared scans). Unfortu-
nately, no implementation details are available, making it
hard to compare them to our proposal.



4 On-CPU parallelism
Over the last decade main CPU improvement was related
to extending the processing power of a single processing
core, mainly by increasing clock-speed and the number of
functional units. Recently, a new trend can be noticed,
where CPUs are being extended with built-in parallel fea-
tures, namely simultaneous multi-threading and chip multi-
processing.

In modern superscalar CPUs many applications do not
make full use of all available processing units, mainly
due to memory accesses delaying execution. Simultane-
ous multi-threading (SMT) [16] is a technique that allows
a single CPU to execute multiple threads at the same time
to improve processing unit utilization. For example, when
one thread waits for the memory access, another can use
idle processing units. In SMT threads share most of the
CPU resources, including cache memory. This might re-
sult both in benefits (e.g. faster access to mutex variables)
and drawbacks (e.g. one thread causing eviction of other’s
data from the cache). SMT is present e.g. in Intel Pentium
4 (hyper-threading) and in upcoming Sun Niagara CPUs.

Since X100 primitives already efficiently utilize avail-
able processing units and do not suffer from cache misses,
we believe that current SMT chips can only provide mi-
nor performance benefits for X100. Moreover, since cache
is shared, vector sizes need to be decreased possibly caus-
ing performance degradation. Still, SMT provides some
unique opportunities we plan to investigate. For exam-
ple, data could be saved into the cache by a decompress-
ing thread, and immediately used by a processing thread.
Moreover, SMT might provide very efficient synchroniza-
tion techniques, allowing for fine-grained parallelism lev-
els. Finally, if future CPUs will increase their super-
scalar features (imagine dozens of execution units), a single
thread will not be able to utilize all of them, making the use
of SMT inevitable.

This year both Intel and AMD presented next genera-
tions of their CPUs equipped with dual-cores on a single
chip. This technology, known as chip multi-processing
(CMP), is similar to the traditional symmetric multi-
processors (SMP), since cores have most of the resources
private (including cache). We plan to convert the SMP al-
gorithms developed for MonetDB [17] to X100 vectorized
pipeline. Still, CMP has features that make it unique. For
example cores inside AMD Opteron can communicate di-
rectly through a built-in system request queue, without ac-
cessing front side bus, like it happens in Pentium 4. More-
over, CMP is orthogonal to SMT. Sun Niagara CPU is ex-
pected to combine these ideas by using 8 cores with 4 si-
multaneous threads each.

With increasing parallel capabilities of CPUs we expect
the main-memory bandwidth to become a bottleneck. Pre-
liminary experiments show that this problem can be re-
duced by lightweight compression algorithms. For queries
with high bandwidth requirements decompression already
helps on current processors, showing its high potential for
the future architectures.

5 Conclusions
In this article we presented the state of our research on
improving database performance in data intensive applica-
tions. Three main issues were discussed: our recent work
on X100, high performance execution engine exploiting
the features of superscalar CPUs, current development of
ColumnBM that improves disk access to satisfy high band-
width requirements of X100, and future research related to
exploiting the features of modern parallel CPUs. We be-
lieve that combination of these ideas will result in an ar-
chitecture that will efficiently utilize modern hardware and
achieve high performance in data intensive tasks.
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